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SUMMARY 
A comparison between solutions from simulations of a non-linear density current test problem was made in 
order to study the behaviour of a variety of numerical methods. The test problem was diffusion-limited so 
that a grid-converged reference solution could be generated using high spatial resolution. Solutions of the 
test problem using several different resolutions were computed by the participants of the ‘Workshop on 
Numerical Methods for Solving Nonlinear Flow Problems’, which was held on 11-13 September 1990 at the 
National Center for Supercomputing Applications (NCSA). In general, it was found that when the flow was 
adequately resolved, all of the numerical schemes produced solutions that contained the basic physics as well 
as most of the flow detail of the reference solution. However, when the flow was marginally resolved, there 
were significant differences between the solutions produced by the various models. Finally, when the flow 
was poorly resolved, none of the models performed very well. While higher-order and spectral-type schemes 
performed best for adequately and marginally resolved flow, solutions made with these schemes were 
virtually unusable for poorly resolved flow. In contrast, the monotonic schemes provided the most coherent 
and smooth solutions for poorly resolved flow, however with noticeable amplitude and phase speed errors, 
even at finer resolutions. 

KEY WORDS Navier-Stokes Density current Converged solution Nonlinear Richardson extrapolation 
Numerical methods 

1. INTRODUCTION 

Many numerical techniques have been developed during the past 35 years to solve the 
Navier-Stokes equations for initial boundary value problems of non-linear fluid flow. Some of 
these techniques have been designed for specific types of problems such as shock waves, while 
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others have been developed to improve global conservation of various fluid properties and 
accuracy in the details of the simulated flow. However, no scheme has ever been proven superior 
for universal application. 

The wide acceptance of the many different types of numerical schemes that have been 
developed is based on their usefulness in simulating particular non-linear fluid flow problems, 
and is rooted in the proof of theorems such as those developed by Lax, which state that 
consistency and stability are the necessary and sufficient conditions for convergence of linear 
problems.’ Thus, given a stable and consistent difference form of a continuous system, a grid- 
converged* solution can be obtained as Ax and At+O. This implies that all stable and consistent 
difference systems for a given linear continuous system should approach the same grid-converged 
or analytic solution. 

In the past, only a modest number of papers in the literature have been devoted to studying 
systematically the behaviour of the many types of numerical techniques applied to multidimen- 
sional non-linear problems.2.3 One reason for this is that it has been very difficult until recently to 
obtain grid-converged solutions for these problems. Computers now have enough speed and 
memory so that grid-converged numerical solutions can be found for non-linear problems with 
scale-limiting physics, such as diffusion, by using very high resolution. However, there is generally 
no agreement in the literature as to what problems are best suited for testing various numerical 
techniques. As a result, researchers generally choose test problems that have relevance to their 
fields of or are much simpler than the real problems of interest. While this has proven 
useful for individual disciplines, it makes comparisons of the behaviour of various numerical 
techniques difficult. 

With this in mind, a ‘Workshop on Numerical Methods for Solving Nonlinear Flow Problems’ 
was heldt on 11-13 September 1990 at the National Center for Supercomputing Applications 
(NCSA) to study the behaviour of a variety of numerical methods when applied to a particular 
diffusion-limited1 non-linear test problem of fluid flow for which a grid-converged solution could 
be generated. The workshop was designed to be a forum for discussion of a variety of traditional 
and new numerical methods in the context of their use in solving non-linear systems of equations 
encountered in atmospheric science, astrophysics, aerodynamics, turbulence and other fluid flow 
disciplines. Researchers were requested to use the numerical methods that they had developed (or 
were developing) to generate solutions at various resolutions for a prescribed fluid flow test 
problem, and invited to describe their results in oral presentations§, T[ at the workshop. Some of 

* The term gridconverged is used to state that no meaningful improvement in a numerical solution could be obtained 
using higher resolution within the practical limits of finite precision, speed and memory of a computing machine. 
t The workshop was held at the National Center for Supercomputing Applications (NCSA) at the University of Illinois, 
and was co-sponsored by the NCSA, the Space Science and Engineering Center (SSEC) at the University of Wisconsin 
and the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma. 
t: In the numerical simulation of diffusion-limited problems, the length scale of the smallest resolvable flow features is 
dictated by the length scale associated with the diffusion. 
$ Numerical scheme presentations were made by Dr. John Anderson (SSEC, University of Wisconsin), Richard Carpenter 
(CAPS, University of Oklahoma), Dr. Stevens Chan (LLNL, University of California), Dr. Scott Fulton (Clarkson 
University), Dr. Wojciech Grabowski (NCAR), Dr. John Hawley (University of Virginia), Dr. Mike Norman (NCSA, 
University of Illinois), Dr. Jim Stone (NCSA, University of Illinois), Dr. Vic Ooyama (AOML), Dr. Miodrag Ran& 
(CAPS, University of Oklahoma), Dr. William Skamarock (NCAR), Dr. Piotr Smolarkiewicz (NCAR), Dr. Jerry Straka 
(University of Oklahoma), Dr. Greg Tripoli (University of Wisconsin), Dr. Louis Wicker (NCSA, University of Illinois) 
and Dr. Ming Xue (CAPS, University of Oklahoma). Drs. Anderson, Straka and Wilhelmson opened the workshop with 
a discussion of the reference solution. 

Presentations were made by Dr. Larry Smarr (NCSA) on the High Performance Computing Initiative, Dr. John 
Anderson (SSEC) on Parallel Computing, Matt Arrott (NCSA) on Distributed Computing and Visualization, Charlie 
Catlett (NCSA) on Networking, Dr. Mike Norman (NCSA) on the Scientific Workbench and Dr. Kelvin Droegemeier 
(CAPS), Dr. Bill Skamarock (NCAR), Dr. Bob Wilhelmson (NCSA) and Dr. Jim Stone (NCSA) on Visualization. 
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the numerical methods used by the workshop participants include traditional finite differences, 
piecewise polynomial approximations, grid adaptation, and local and global spectral techniques. 
It is important to note that the primary emphasis of the workshop was to examine the behaviour 
of various numerical schemes, not to determine the most economical and most accurate numer- 
ical schemes. 

In this paper, selected results from the workshop are presented to illustrate the behaviour of 
solutions from several different numerical methods for resolutions that poorly, marginally and 
accurately resolved the basic evolution and flow features of the test problem. The criteria that 
were used to select an appropriate test problem together with the governing equations, boundary 
conditions and initial conditions are presented in Section 2. Next, results from a grid-converged 
solution of the test problem are described in Section 3. This solution was used to gauge the 
accuracy of the solutions provided by the invited researchers. Then, results from the application 
of these diffcrent numerical techniques to the test problem are described in Section 4. Finally, 
a summary of the results and conclusions from the workshop are presented in Section 5. 

2. TEST PROBLEM 

There are many interesting two- and three-dimensional non-linear fluid flow problems that could 
have been chosen for the workshop. A two-dimensional problem was chosen as most of the 
researchers invited to the workshop had two-dimensional models. In addition, it was more 
computationally feasible to obtain a grid-converged solution for a two-dimensional problem than 
for a three-dimensional problem. In order to obtain a grid-converged solution, the problem 
necessarily had to be diffusion-limited. To test the robustness of a variety of numerical methods, 
a test problem was designed that contained non-linear dynamics, transient features and fine-scale 
structures. Finally, it was required that the problem was simple to implement, utilized Cartesian 
co-ordinates, was solvable using both compressible and incompressible flow equations, and 
contained minimal 'non-dynamical' physics so that researchers from any discipline studying fluid 
flow could participate without making major source code changes to their hydrodynamic models. 

After careful consideration and experimentation, a density current problem in an otherwise 
homogeneous and isentropic two-dimensional fluid was chosen that was similar to that used in 
the study reported by Droegemeier and Wilhelmson.6 The density current was initiated as a cold 
blob of air that subsequently descended to the ground. As the density current spread out laterally 
at the lower boundary, Kelvin-Helmholtz shear instability rotors formed along the top of the 
cold air boundary (Figure 1). 

The fully compressible equations for fluid flow that describe the density current problem are as 
follows: 

mass continuity 

(P)t+(Pu),+(PW),=O, 

horizontal momentum 
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REFC 
025 m 

19.2 km 

Figure 1. Plots of 6' at (a) 0, (b) 300, (c) 600 and (d) 900 s for the 25.0 m resolution Compressible reference model solution. 
Contour interval (CI) is 1°C and the contours are centred around 0°C. The minimum value of 6' at 0 s is -16-624°C (note 

that only the lower left 0.75 of the domain is shown) 

equation of state 

internal energy 

exner function 

P =  PRd T, 

&=COT, 

- 1 R&,, n = ( P P o  ) 

In the above equations, u is the horizontal velocity, w the vertical velocity, p the density, p the 
pressure, E the energy and 8 the potential temperature. The independent variables are horizontal 
(x) and vertical (z) Cartesian grid directions, and time (t). Variables and quantities subscripted 
with t, x and z are derivatives with respect to the independent variables. Other constants include: 
Rd = 287.0 J kg- ' K- ' (gas constant for dry air); C,= 1004.0 J kg- ' K- ' (specific heat at constant 
pressure); C,=717.0 J kg-' K- '  (specific heat at constant volume); po  = 100000~0 kgm-ls-' 
(reference pressure); g = 9-81 m s-' (gravitational parameter); K = 75-0 mz s- ' (diffusion coeffic- 
ient); 

Approximations of the compressible system described above can also be used to integrate the 
model test problem since the flow velocities are well below the speed of sound. For example, in the 
anelastic system there is no tendency equation for den~ity,~ and the mass continuity equation is 

( P 4 x + ( P w ) , = O ,  

where base state variables are a function of only z and are denoted by an overbar. In the anelastic 
system, only the base state density is considered, except when coupled with gravity. Furthermore, 

= 8 = 300-0 K (surface temperature). Finally, temperature is defined as T= no. 
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the pressure is computed from a diagnostic pressure equation obtained by differencing the u and 
w momentum equations with respect to x and z ,  respectively. In the quasi-compressible system 
(super-compressible system), a pressure tendency is used.* - O This tendency equation is approx- 
imated by 

where c, is the pseudo sound speed, and primed variables are perturbations from the base state. 
For example, p‘ is given as p‘ = ( p  - p). As with the anelastic system, only the base state density is 
used in the quasi-compressible system, except when density is coupled with gravity. Both 
Anderson et uL9 and Droegemeier and Davies-Jones lo have shown that the quasi-compressible 
system produces accurate solutions provided that c, is at least twice the speed of the fastest 
physically important signal in the system. In addition, Anderson et ul.’ and Chorin8 have shown 
that the quasi-compressible system approaches the anelastic system in the limit as c,+cc. 

The lateral boundary conditions for the test problem are u = wx = p x  = 8, = 0, and the vertical 
boundary conditions are w = u, = p z  = 8, = 0. For real atmospheric problems, the vertical pressure 
gradient a t  the upper and lower boundaries would typically follow from the vertical equation of 
motion, with w = 0 at the vertical boundaries. To simplify the test problem, a reflective condition 
is applied to p at the upper and lower boundaries and the gravitational parameter changes sign 
below z = 0 and above z = 6.4 km. Also, note that a free slip condition on the velocity components 
is imposed at the walls of the domain. 

The dependent variables are initialized by their base state values, which are a function of z ,  as: 

(P - P ) t  = P: = - c,” “ P U ) ,  + (Pw)z l ,  

O=r=300K, u=u=O.O. 

To provide the negative buoyancy necessary to initiate a density current, the following function 
is used to specify a temperature perturbation: 

AT={ 0.WC if L > 1.0, 
- 15.0°C[cos(nL)+ 1*0]/2 if L S  1.0, 

where L={[(x-xc)x~1]2+[(z-zc)zr~1]2}o~5,  x,=O.Okm, xr=4.0km, z,=3.0 km and 
z,=2*0 km. The quantity A0 can be evaluated from AT and the relation T=d. The minimum 
temperature in the thermal perturbation is -15*0”C, and it is centred at x =00 km, which is in the 
middle of the domain. With the initial and boundary conditions described above, the domain is 
symmetric about the vertical line at x=O-0 km and is periodic over the interval from -25.6 to 
25.6 km. To minimize computational costs, the symmetry of the problem is exploited. A plot of 
the initial 8’ temperature field is shown in Figure 1 (a) with the thermal perturbation centred on 
the symmetric left boundary (x = 0). 

3. REFERENCE SOLUTIONS 

To standardize the comparisons of the solutions of the test problem, a set of simulations was 
made with a fully compressible reference model. This model (hereafter called the REFC model) 
was integrated using standard second-order centred-in-time and centred-in-space differences on 
an unstaggered grid (Arakawa A-grid”). A time filter was used to prevent the separation of 
solutions that can occur with centred time differences.12 The form of this filter is 
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qY*=(l - 2 ~ ) ~ t + ~ ( ~ t - A t + ~ t ' A t ) ,  where q5 is any prognostic variable and c t = O l O  is the filter 
coefficient. The advection terms were differenced using a second-order quadratic conserving 
~ c h e m e . ' ~ ' ~ ~  To maintain linear stability, the diffusion terms were integrated from time t - At 
with a forward-in-time differencing scheme. The reference simulations were initiated with a ther- 
mal perturbation as described in Section 2, and integrated out to 900 s. A grid-converged 
solution, or what will now be called the reference solution, was obtained with a grid resolution of 
25.0 m. A time step of 15625 x lo-' s was used to integrate the REFC solution. The resolution 
for the reference solution was determined by successively halving the grid resolution in simula- 
tions, starting from 400.0 m resolution, until no significant improvement in the solution could be 
achieved. The accuracy of the 25.0 m reference solution is discussed after discussing the evolution 
of the density current simulation. 

The evolution of the density current in the reference solution can be described in terms of three 
Kelvin-Helmholtz shear instability rotors that develop along the top boundary of the simulated 
cold air outflow boundary during the period from 0 to 900 s. The evolution of these rotors can be 
seen in the 8' solutions from the 25.0 m resolution reference simulation at 0, 300, 600 and 900 s 
(Figure 1). In addition, the p' ,  8', u and w fields from the reference simulation at 900 s are shown 
together in Figure 2. At the beginning of the simulation, a downdraft formed and accelerated in 
response to the negative buoyancy described by the initial conditions. The initial buoyancy 
gradient resulted in the production of vorticity that helped force the first rotor before the cold 
thermal reached the lower boundary. A pressure excess developed at the bottom of the domain 
where the downdraft was decelerated by the lower boundary, and the accompanying horizontal 
pressure gradient turned the flow and accelerated it horizontally. By 300 s, the first rotor was well 
developed, and was near the leading edge of the density current in a region of strong vertical shear 

025m I 
900 s 

19.2 km 

Figure 2. Plots, with contour intervals (CI) given in parentheses, of (a) p' (CI =03 mb), 0' (CI = l T ) ,  (b) u (CI =2  m s-  l )  

and (c) w (CI =2  m s-') at 900 s for the 25.0 m resolution compressible reference model solution. All contours are centred 
around zero contours (as in Figure 1) 
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REFC 
025m 

of the u-wind. At this time, both the peak u-wind and the propagation speed of the front of the 
density current were more than 30 ms-'. Between 300 and 600 s, the Kelvin-Helmholtz shear 
instability along the top of the outflow boundary intensified the first rotor, and forced a second 
rotor to develop at the front of the density current. During this period, the peak outflow wind 
speed accelerated to 36 m s- I, while the propagation speed of the front slowed to 18 m s-'. By 
900 s, a third rotor developed, and the speed of the front slowed further to about 15 m s- '. In 
simulations carried out beyond 900 s, new rotors formed about every 300 s. For example, the 
small perturbation on the leading edge of the density current at 900 s evolved into the next rotor. 
The density current evolution described above is typical of that produced in simulations that 
assume a constant potential temperature environment with no vertical wind 

The 8' solutions made with the REFC model at 900 s for various resolutions between 25.0 and 
533.3 m are used to help show that a grid-converged solution is obtainable with high enough 
resolution (Figure 3). In making the solutions shown in Figure 3, the ratio of At/dx was held 
constant. By comparing the solutions in Figure 3, it can be seen that all of the simulations are 
visually distinguishable from the 25.0 m reference solution, except for, perhaps, the 33.3 m 
solution. Notice that the basic structures of the flow are not resolved until the resolution is at least 
133.3 m. The most noticeable differences between the solutions are (1) the propagation speed of 
the density current, (2) the formation and location of-the Kelvin-Helmholtz rotors, and (3) the 
coherency of the solutions. From the results shown in Figure 3, the basic flow features (e.g. the 

REFC 
133 m 

-~ 
192 km 

Figure 3. Plots of 8' at 900 s from the compressible reference model using (a) 25.0, (b) 33.3, (c) 50.0, (d) 66.6, (e) 100.0, 
(f) 133.3, (g) 200.0, (h) 266-6, (i) 4OO-O and (j) 533.3 m resolution (as in Figure 1) 
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three rotors) appear to be adequately resolved at 100.0 m, marginally resolved at 200.0 m, and 
poorly resolved at 400.0 m resolution. 

To quantify the errors in the solutions from the REFC model, the L2 norm of 8‘ is computed 
with 

where NX and NZ are the number of grid points in any particular solution, i and k are the grid 
indices in the particular solution, and ii and kk are the grid locations in the 25.0m reference 
solution that correspond to i and k. 

A plot showing the results of the L2 norm computations for the 8’ solutions made with 
Ar = constant (the At for the 25.0 m reference solution) is shown in Figure 4. The lines in Figure 4 
labelled with 0(1) and 0(2) indicate the slopes of first- and second-order convergence, respect- 
ively. (The behaviour of the L2 norms for u, w and p’  is essentially identical to that for the 
L2 norms for O’.) At coarse resolutions (Ax > 133.0 m) the convergence is barely first-order, despite 
the fact that a second-order-accurate model is used. This is because the basic features of the flow 
are underresolved at these resolutions. Convergence finally improves to second-order for resolu- 
tions less than 133.0 m, which is consistent with the visual analysis of the 8‘ solutions described 

oa Y 

10 

1 

.1 

.01 

.001 

L2 Norms for Reference Model: 
Potential Temperature Perturbation 

Spatial Resolution (m) 
10  100 1000 

I 

.0125 .125 1.25 
Temporal Resolution (s) 

Figure 4. Graph of 8’ L2 norms (“C) from self-convergence tests with the compressible reference model (REFC). The bold 
solid line labelled with ‘self-convergence solutions’ represents the L, norms for spatial truncation errors of solutions made 
with At =constant and varying grid spacings. The Lz norms were computed against a 25.0 m reference solution. The bold 
dashed lines labelled with, for example, ‘200.0 m solutions’ represent L2 norms for temporal truncation errors of solutions 
made with Ax =constant ( e g  200.0 m) and varying time steps. The reference solutions for these computations were made 
using a time step consistent with Ar= 12.5 s times a constant (see text) in each of the cases. The solid lines labelled O(1) and 

O(2) represent first- and second-order convergence, respectively 
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above. Note that the smallest scale features are barely resolved by five grid points with 100.0 m 
resolution, while they are well resolved by about 20 grid points with 250m resolution. The 
L2 norms for Of, at higher resolutions, are small (in a relative sense), suggesting that spatial 
truncation errors are small and that higher resolution will not result in a better solution. 
Additional simulations were also made with resolutions as fine as 12.5 and 8.33 m, but in 
a smaller domain (19.2 x 4.8 km) for computational reasons. As expected, these solutions were 
essentially identical to the 25.0 m reference solution described above (suggesting, also, the 
minimal impact of domain size on the solutions). 

Richardson extrapolation is used to verify that the 25-Om solution could be considered 
spatially grid-converged. The extrapolation is performed using the 50.0 and 25.0 m solutions 
made with At=constant to produce an extrapolated solution that is O(4)-accurate in space 
(remember that the REFC model is 0(2)-accurate in space). The formula for extrapolation is 
developed following Conte and de Boor16 and Evans and Paolucci” by assuming that an exact 
value of a dependent variable 4 can be found from 

+ higher-order terms 

where q5i is the result of a computation using a second-order space scheme, and C2 and C4 are 
functions of higher-order derivatives. With two numerical solutions available (denoted below by 
subscripts a and b), one made with higher resolution than the other, two approximations for an 
exact value of 4 can be found: 

(based on the less accurate solution) 

and 

(based on the more accurate solution). 

By assuming that C2 and C4 are nearly constant, which is an acceptable approximation for 
solutions that are converging similarly, an extrapolated value of 4 can be computed that is 
Ax4-accurate in space. This is accomplished by eliminating the terms in C2, which results in 

4 e  = 4 b  + 4 ( 4 b  - 4 a ) ?  

where 4e is the extrapolated value. 
The errors in the 25.0 m REFC solution, shown in Table 1 as the quantity of the difference 

between the 25.0 m REFC solution and the extrapolated solution divided by the extrapolated 
solution [( 425 - 4e)/4e], indicate that the maximums and minimums are typically within 
OOOO1-0.001 of the O(4) in space extrapolated solution. These results suggest that the 25.0 m 
reference solution is grid-converged, particularly considering that Leone’* and Evans and 
Paolucci” used an error criterion of 0.01-0.02 to indicate grid convergence in benchmark 
solutions of their test problem. 

The temporal truncation errors are also examined by integrating the REFC model to 900 s 
with various time steps using a constant spatial resolution. (This is done for resolutions of 50.0, 
100.0 and 200.0 m.) The time steps used are At = 1.5625 x 3.125 x 6.25 x lo-’, 
12.5 x lo-’ and 25.0 x lo-’ s. These time steps are consistent with At=constant times 6, where 
6=12.5, 25.0, 50-0, 100.0 and 200.0 m (note that At=3.125 x lo-’ is the time step used for the 
25-0 m REFC solution). The L2 norms for the solutions at a given resolution are computed using 
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Table I. Results from Richardson extrapolation in terms of [( 425 - 4J4J, 
where 425 is a value from the 25.0 m reference solution and 6. is a value from 

the extrapolated solution 

Variable Reference solution vs. Reference solution vs. 

extrapolation solution extrapolation solution 
O(4) in space O(2) in time 

0.0003405 
0*0001833 
0*0002089 
0*000 1 1 37 
oooooo0o 
0.0008252 

0.0007890 
0.0001633 
0.0042070 
OQO14934 
0~0000o0O 
0.0036280 

a solution made with the same resolution and At = 15625 x =constant times 12.5 m as the 
reference solution. The results of these computations are plotted in Figure4 such that, for 
example, the 200-0 m resolution solution made using a time step consistent with At =constant 
times 25-0 m is plotted with an abscissa consistent with 25-0 m resolution. By plotting the errors 
in this manner, it can be seen that the L2 norms of the 8' solutions, for a given resolution, contain 
temporal truncation errors that are nearly an order of magnitude smaller than those due to 
spatial truncation errors. Notice that the magnitude of the time truncation errors becomes 
smaller at higher spatial resolutions. Simple extrapolation of the 200.0, 100.0 and 50-0 m time 
truncation errors suggest that the time truncation errors in the 25.0 m reference solution are 
similarly small. Also, it can be seen that the time truncation errors improve at about O(1), 
consistent with that expected for an 0(2) scheme with a time filter (e.g. it can easily be shown that 
an O(2) time scheme, modified by using the Asselin time filter, becomes an 0(1) scheme). The 
small time truncation errors are not surprising since the REFC model was integrated with a fully 
explicit numerical technique. This required a fairly small time step in order to maintain numerical 
stability for the fast moving sound waves (e.g. c, = 347 m s-'  at z =O). This speed is about an order 
of magnitude greater than for the physical processes of interest in density current dynamics and, 
correspondingly, the time scale for the sound waves is about an order of magnitude less. 

Richardson extrapolation is also performed to compute a solution that is O(2)-accurate in time 
(i.e. 0(2)-accurate in time considering the effects of the Asselin time filter; otherwise, the time 
extrapolated solution would be 0(4)-accurate) using an additional 25.0 m solution made with the 
REFC model and a time step of half that used to obtain the 25-0 m reference solution. The results 
of the time extrapolation, which are provided in Table I, show that the maximums and minimums 
in the 250 m reference solution are within 0-002-0-04 of the 0(2) in time extrapolated solution. 

To summarize, the results of the L2 norm calculations and the Richardson extrapolation 
strongly suggest that the 25.0 m reference solution is grid-converged, at least for the purposes of 
this paper. 

4. COMPARISON SOLUTIONS 

Participants of the workshop used their chosen numerical method(s) to simulate the density 
current test problem using 100.0, 200.0 and 400-0 m resolution. At these resolutions, the flow 
features of the test problem were, respectively, adequately resolved, marginally resolved and 
poorly resolved by the REFC model relative to the 25.0 m reference solution. References for the 
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various numerical methods that were discussed and used at the workshop are summarized in 
Table 11. Additional information about the order of accuracy of the numerical techniques, grid 
staggering and system of equations used is summarized in Table 111. The definitions proposed by 
Arakawa and Lamb'' are used to describe grid staggering. For example, all variables are 
co-located on the unstaggered grid (Arakawa A-grid), while velocity components are centred on 
the normal edges of grid zones and scalar variables are centred in the grid zones on the staggered 
grid (Arakawa C-grid). 

To begin the discussion of the comparisons, results of the 8' solutions at 900s for grid 
resolutions of 400.0, 200.0 and 1000m from the FLS, PPM and MUPL models (those of the 
authors') are shown in Figure 5. Notice that the 8' solutions at 400.0 m resolution show little 
resemblance to the reference solution. At 200-0 m, the FLS model appears to have captured all of 
the basic characteristics of the reference solution, including the phase speed of the density current 
front. However, the solution is plagued by numerical 'noise' problems with what is similar to 
'spectral blocking'. The PPM and MUPL models do not suffer from this problem, but they are 
dissipative, and phase speeds for higher wave numbers are too slow. With 1000 m resolution, the 
details in the solutions made with the different models are quite similar. Additional simulations 
with the FLS and MUPL models using 50.0 m resolution (not shown) produce solutions that 
contain the finest details of the flow seen in the reference solution (no 50.0 m solution was made 
with the PPM model). 

The 8' solutions at 900 s from the 100.0 and 200.0 m resolution simulations for all of the results 
submitted after the workshop are shown in Figure 6. As can be seen in Figure 6, all of the methods 
are capable of correctly reproducing the essence of all of the important physics of the flow in the 
test problem when the resolution is reduced to 100.0 m. Many of the solutions using 100.0 m 
resolution are very good; however, there are significant quantitative and qualitative differences 
between some of the solutions and the 25-0 m reference solution. Most notably, the full develop- 
ment of the leading Kelvin-Helmholtz rotor and phase speed of the density current front are not 
well simulated with some of the numerical methods. For a modest 200-0 m spatial resolution, 
differences amongst the solutions are quite noticeable. These solutions are shown because, in 
modelling complex fluid flows, the spatial resolution is often 'just adequate' due to computational 
constraints, especially in three dimensions. The differences can be attributed to the particular 
system of equations solved and to the different properties of the various numerical techniques 
including order of accuracy, monotonicity and conservation. When the resolution is decreased to 
400.0 m, most of the solutions show little or no resemblance to the reference solution (not shown). 
In addition, some of the models are numerically unstable at 400.0m resolution (SPEC and 
high-order FD models). 

In processing the results from the workshop, an attempt was made to compute L2 norms for all 
of the solutions submitted using the 250m reference solution as the true solution. However, 
differences in the way that pressure was solved in the various models led to enough differences in 
the solutions that meaningful comparisons could not be made. To help demonstrate this problem, 
a 250m resolution reference solution was made using a quasi-compressible version of the 
compressible reference model. (The quasi-compressible reference model, hereafter referred to as 
the REFQ model, was integrated with a pseudo sound speed of 150.0 m s- '.) As an example of the 
sensitivity of the error analyses to different reference solutions, the L2 norm was 0.45"C for the 
100.0 m quasi-compressible FLS 8' solution when compared to the REFC reference solution, and 
0-12°C when compared to the REFQ reference solution. In contrast, the PPM model used 
a compressible system of equations that was similar to the compressible system used in the REFC 
model. As a result, the L2 norm was 0.20"C for the 100.0 m resolution PPM 8' solution when 
compared to the REFC reference solution, and 0.46"C when compared to the REFQ reference 
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solution. In general, it was found that solutions made with compressible systems converged to the 
REFC reference solution, while solutions made with quasi-compressible systems (e.g. MUPL) 
converged to the REFQ reference solution. 

Several quantitative measures for each of the submitted solutions were compared with the 
reference solution, including the location of the density current front (chosen arbitrarily to be 
the -1°C contour), coldest and warmest 8', total sum of 6', positive and negative contributions to 
the total 6', total 8" (c W'), total enstrophy (1 c', where c = V  x V) and total specific kinetic 
energy (1 0 5 ( u 2  + w2)). Numerical values of these quantities for the 200.0 m solutions are shown 
in Table IV, and are discussed below along with those from the 100.0 and 400-0 m solutions. The 
numerical values shown in Table IV for the 250m reference solution are from sampling the 
reference solution at 200-0 m resolution. 

The best simulations of the location of the density current front were obtained, as expected, 
from models with the highest-order schemes. The second-order FCT scheme also performed 
exceptionally well, especially at coarse resolutions. The worst phase speed errors were associated 
with the upstream and lower-order finite difference schemes. At 1000 m resolution, nearly all of 
the schemes predicted the front location with, at most, 4 per cent error. At 4000 m resolution, 
front speed errors varied from 2 to 24 per cent (JFH and REFC solutions, respectively). 

The most accurate simulations of total specific kinetic energy and the total enstrophy were 
obtained with the higher-order models. At 100.0 m resolution, most of the models predicted the 
total specific kinetic energy to within 2-4 per cent, with some as accurate as 0.5 per cent (FLS). 
While none of the schemes performed very well at 400.0 m resolution, some were clearly better 
than others for the given problem. In general, the higher-order FD models, the FLS model and 
the SPEC model all did quite well at predicting total enstrophy and total specific kinetic energy. 
In comparison, the upstream and monotonic schemes were quite damped and did not perform as 
well. However, these solutions contained very little, if any, numerical noise. Note that the higher 
values of total specific kinetic energy and total enstrophy with the REFC and REFQ models at 
coarser resolutions were due to high spatial frequencies, that tended to develop with centred- 
in-space schemes. 

The values of minimum 8' values were in error by 0.1-76 per cent in the 100.0 m resolution 
solutions to more than 1400 per cent at 400.0 m resolution solution. Typically, though, the errors 
in minimum 6' were closer to 50 per cent in the 400.0 m solutions. The smallest error in minimum 
8' using 400.0 m resolution was 6.4 per cent with the FCT model. As expected, the monotonic and 
upstream methods generally underpredicted the coldest temperatures (too warm), total 8' and 

Of', especially at coarser resolutions. This correlates well with the smaller magnitudes of 
kinematic measures for these models, as smaller perturbation potential temperature amplitudes 
tended to indicate weaker mean flows. The other schemes, such as the centred-in-space and 
spectral methods generally overpredicted the coldest temperatures (too cold), total 8' and 1 Of', 
again at the coarser resolutions. This correlates well with the larger magnitudes of kinematic 
measures found with these schemes, as larger perturbation potential temperature amplitudes 
tended to indicate stronger mean flows. Finally, it should be noted that very large spurious 
positive values of 8' (8'>4"C) developed in association with poorly resolved sharp gradients of 8' 
in the coarse resolution simulations made using centred-in-space schemes. 

As stated above, solutions of the test problem could have been computed using various 
approximations of the compressible system of equations and various grid meshes. When reference 
solutions were made with the REFC model, the REFQ model and a fully compressible model on 
a staggered grid (Arakawa C-grid, REFS model), subtle differences were found. At first glance, the 
8' solutions from the REFC, REFQ and REFS models seem quite similar (Figure 7). However, 
there are local differences that exceed 50 per cent. An example of this is clearly seen in Figure 7(d), 
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Table IV. Statistics for the 200 m simulations (see text for discussion) 

Method 

AFDlO 
FD02 
FD04 
FD06 
FD08 
FDlO 
FE 
FCT 
FLS 
MUa 
MUPL 
SPEC 
PPM 
REFC 
REFQ 
MUb 
CROW 
ENST 
REFC25 
REFQ25 

Front 
location 
(m from 

x=O) 

1517597 
Unstable 
Unstable 
1520556 
153 12-25 
15344.90 
14532.76 
15426.02 
15 174.20 
14566.62 
15 188.39 
1557460 
15027.97 
1706945 
16998-44 
14853-97 
15745.98 
1480 1.46 
15537.44 
15509.17 

- 1522.02 10-560 
Unstable Unstable 
Unstable Unstable 
- 1539.57 50.374 
- 1547.30 50-798 
- 1544.49 47-255 
- 1358.66 3.7766 
- 1406.75 O~OOOO 
-1518'09 12.794 
- 1292.61 55.030 
-1449.04 0.0000 
- 1352.39 125.35 
- 1408.65 1.5801 
- 1467.79 9.2917 
-156244 11.137 
- 1403.14 69-800 
- 1597.09 4.6649 
-1549'51 1.7945 
-1427.10 O.oo00 
-1512.80 0.0000 

C W  
(for O'<O) 

(K) 

- 1532.580 
Unstable 
Unstable 
- 1589.94 
- 1598-10 
- 1591.74 
- 136244 
- 1406.75 
- 1530.88 
- 134764 
- 1449.04 
- 1477'74 
- 1410.23 
- 1477.08 
- 1573.58 
- 147295 
- 1601.75 
-1551.30 
- 1427.10 
- 1512.80 

E K E  CC' emax 
(m2s-') (s-') (K) 

89523-45 028532 0-60831 
Unstable Unstable Unstable 
Unstable Unstable Unstable 
90826.3 036354 1.3727 
90437.8 0-33477 1.3996 
90204-8 0-32898 1-1637 
72393.9 019958 0.18906 
81664.5 0.24736 0.00000 
90265.7 029972 0.67697 
82024.8 0-21410 018953 
95565.9 0.24115 M)oo 
91483.2 0.32510 0.69894 
83364% 0.20404 0.02200 
89156.9 037020 0.56449 
93203.0 0-38867 0-61230 
83188.0 0.20420 0-43787 
85592.6 0.25326 0.10216 
85804.0 023555 0.05656 
91580.7 034306 000000 
90699.8 0-37140 M)oo 

emin I@' 
(K) (K2) 

- 16.5861 7512.49 
Unstable Unstable 
Unstable Unstable 
-21.7034 7455.34 
-20-5390 7951.94 
-21.5842 8357.94 
-8.43701 5320'12 
- 10.1065 586943 
- 14'1625 7509.47 
-7.73373 509357 
-7.82435 5355.54 
- 11.7825 6039'57 
- 8.3 1125 5665.45 
- 10.9667 5858.15 
- 11.6727 6832.78 
-790158 6037-31 

-20.5178 7833.42 
-9.96810 6588.00 
-9.77375 6613.62 

-100000 7395.26 

Note: REFC25 and REFQ25 are the 25 rn compressible and quasi-compressible referencc solutions sampled at 200 m. 

REFS 
025 m 

REFC 
025m 

192 kn 

Figure 7. Plots of 8' at 900 s for the 25.0 m solutions from the (a) staggered compressible reference model (REFS), (b) the 
quasi-compressible reference model (REFQ) and (c) the compressible reference model (REFC). The difference field of 0' 

(CI=09C) between the 25.0 m solutions from the REFC and REFQ models is shown in (d) (as in Figure 1) 
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Table V. Comparison of maximums and minimums of p, W, u and w at 
900 s for the 25 m solutions from (a) the compressible reference model using 
an unstaggered grid (REFC), (b) the compressible reference model using 
a staggered grid (REFS) and (c) the quasi-compressible model with un- 

staggered grid (REFQ) 

Variable REFC 

2.87 
-5.14 
0.00 

- 9.77 
36.46 

- 15.19 
12.93 

- 15.95 

REFS 

2.49 
- 5.55 
0.00 

- 9.77 
35.02 

- 16.32 
13.28 

-1611 

REFQ 

1.74 
-5.21 

000 
- 1000 

34.72 
-15.31 

13.04 
- 16.89 

Table VI. Zone cycles (thousands) per second and total central processor unit (CPU) 
time (s) for selected models on the NCSA's Cray-XMP/48 and Cray-2/128 

Method (machine) 64x 16 
(400 m) 

FCT (Cray-2) 
FE (Cray-2) 
FLS (Cray-2) 
MUa (Cray-XMP) 
MUb (Cray-2) 
MUPL (Cray-2) 
PPM (Cray-XMP) 
REFC (Cray-2) 
REFQ (Cray-2) 
SPEC (Cray-XMP) 

53 (6) 
37 (3) 
34 (20) 

149 (18) 
76 (21) 

310 (3) 
68 (21) 

187 (10) 
208 (4) 

14 (12) 

63 (80) 
49 (15) 

169 (126) 

440 (15) 
90 (127) 

214 (69) 
223 (133) 

16 (45) 

39 (120) 

102 (102) 

67 (180) 
51 (116) 
42 (1200) 

190 (900) 
156 (658) 
525 (112) 
98 (938) 

230 (512) 
240 (246) 

16 (187) 

which shows the differences between the 25.0 m resolution REFC and REFQ 6' solutions. These 
discrepancies are associated with differences in the phase speed of the leading edge of the density 
current, and the movement of the trailing rotors. There are also differences of 0-5 per cent in the 
global maximums and minimums of O', p', u and w (Table V). While these differences are smaller 
than at coarser grid resolutions, it is not known if they would continue to decrease at resolutions 
smaller than 25.0 m. Interestingly, these are larger than the differences found in the Richardson 
extrapolation done with the solutions from the REFC model. 

Finally, many participants of the workshop provided timings for their models, in terms of grid 
zone cycles per second, based on simulations made on NCSA's Cray-2/128 and Cray-XMP/48 
(Table VI). As can be seen, most models are up to 40 per cent faster with refined resolution. This is 
due to the more efficient vectorization of longer loops in the higher-resolution simulations. 
Another important point is that the speeds of the individual models differed by up to an order 
of magnitude. These timings are somewhat misleading, though, since some of the slower codes, 
such as the SPEC model, can be run with a very long time step and are quite competitive (in terms 
of total central processor unit time) with some of the other schemes. Unfortunately, a more 
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comprehensive comparison of accuracy versus efficiency of different numerical techniques could 
not be made with the information made available. This is due, in part, to the fact that such 
a comparison was not a primary goal of the workshop. 

5. CONCLUDING REMARKS 

In summary, the follwing statements can be made regarding the results from the simulations 
presented at the workshop: 

(1) When the flow was adequately resolved, all of the numerical schemes captured the basic 
physics of the flow. However, there were still noticeable differences in the timing and 
location of these flow features, even at very high resolutions. The most accurate solutions, 
in terms of reproducing the basic features of the flow as described in Section 3, were, in 
general, those made with high-order and spectral methods. The major problem with the 
solutions made with the monotonic schemes was that some features of the flow were 
underdeveloped and moved too slow due to the damping characteristics of these schemes. 

(2) When the flow was marginally resolved, there were significant differences between the 
solutions produced by the various models. For example, the upstream and monotonic 
models incorrectly simulated two Kelvin-Helmholtz rotors, while higher-order models 
correctly simulated three Kelvin-Helmholtz rotors. In simulating the basic flow features, 
the local spectral scheme performed best; however, it had some probIems with energy 
accumulation at  the highest spatial wave numbers. 

(3) When the flow was poorly resolved, none of the models performed well. However, the 
models that incorporated damped advection schemes produced coherent (smooth) flow 
structures, while the models that incorporated higher-order centred schemes produced very 
noisy solutions. In fact, the solutions made by the local spectral and spectral models were 
essentially unusable, and some solutions made with high-order finite difference models 
became unstable. 

Overall, it appears that no scheme universally produced the best solutions for all of the 
resolutions tried. Clearly’ though, some schemes were better at coarse resolution, while others 
were better at finer resolutions as described above. 

A general result that was reinforced at  the workshop was that care must be taken when 
interpreting the physics described by simulations of non-linear flows with resolutions that might 
be considered marginal. The results from the marginal resolution simulations, which were 
described above, clearly demonstrate this in that the evolution of some simulations was consider- 
ably different than others. While computers have been developed with enough speed and memory 
to carry out simulations of most two-dimensional problems with adequate resolution, many 
three-dimensional simulations are still made with marginal resolution due to computational 
constraints. 

Another result from the workshop was that numerical solutions can be quite sensitive to 
approximations made to the governing equations (without necessarily influencing the reproduc- 
tion of the basic physics). For example, simulations made with quasi-compressible systems tended 
to converge to a reference solution made with a quasi-compressible model, while simulations 
made with fully compressible systems tended to converge to a reference solution made with a fully 
compressible model. Because of this, there was considerable difficulty in determining which 
25.0 m solution should be used as the reference solution. Furthermore, this precluded a detailed 
error analysis of all of the solutions submitted after the workshop. For these reasons, it is 
suggested that participants of similar workshops in the future solve exactly the same system of 
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equations so that comparisons with a reference solution and with results from other models can 
be made more quantitatively. 

Finally, it was agreed upon at the ‘Workshop on Numerical Methods for Solving Nonlinear 
Flow Problems’ that workshops such as the one described in this paper are vital for comparing 
results from the many numerical techniques that are now available to solve complex fluid flow 
problems. They also provide a unique opportunity for scientists from various disciplines to 
interact and convey new information. 
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